Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthritis Res Ther ; 25(1): 162, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667402

RESUMEN

BACKGROUND: Interstitial lung disease (ILD) is the most common cause of death in patients with systemic sclerosis (SSc). Prognostic biomarkers are needed to identify SSc-ILD patients at risk for progressive pulmonary fibrosis. This study investigates autoantibodies measured in bronchoalveolar lavage (BAL) fluid and in serum in reference to the clinical disease course of SSc-ILD. METHODS: Fifteen patients with new onset SSc-ILD underwent bronchoscopy. Autoantibody levels were analyzed using addressable laser bead immunoassay from BAL fluid and the serum. In a separate longitudinal cohort of 43 patients with early SSc-ILD, autoantibodies in serum were measured at baseline and pulmonary function tests were performed at least 2 times over the course of at least 2 or more years. Linear mixed effect models were created to investigate the relationship between specific autoantibodies and progression of SSc-ILD. Finally, lung tissue from healthy controls and from subjects with SSc was analyzed for the presence of the Ro52 antigen using immunohistochemistry. RESULTS: Among SSc-ILD patients who were positive for anti-Ro52 (N = 5), 3 (60%) had enrichment of anti-Ro52 in BAL fluid at a ratio exceeding 50x. In the longitudinal cohort, 10/43 patients (23%) were anti-Ro52 positive and 16/43 (37%) were anti-scl-70 positive. Presence of anti-Scl-70 was associated with a lower vital capacity (VC) at baseline (-12.6% predicted VC [%pVC]; 95%CI: -25.0, -0.29; p = 0.045), but was not significantly associated with loss of lung function over time (-1.07%pVC/year; 95%CI: -2.86, 0.71; p = 0.230). The presence of anti-Ro52 was significantly associated with the loss of lung function over time (-2.41%pVC/year; 95% CI: -4.28, -0.54; p = 0.013). Rate of loss of lung function increased linearly with increasing anti-Ro52 antibody levels (-0.03%pVC per arbitrary units/mL and year; 95%CI: -0.05, -0.02; p < 0.001). Immunohistochemical staining localized the Ro52 antigen to alveolar M2 macrophages in peripheral lung tissue both in subjects with and without SSc. CONCLUSIONS: This study suggests that antibodies targeting Ro52 are enriched in the lungs of patients with new-onset SSc-ILD, linking Ro52 autoimmunity to the pulmonary pathology of SSc. Clinical and immunohistochemical data corroborates these findings and suggest that anti-Ro52 may serve as a potential biomarker of progressive SSc-ILD.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Esclerodermia Difusa , Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/complicaciones , Autoanticuerpos
2.
Acta Histochem ; 125(3): 152024, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36958084

RESUMEN

Pulmonary fibrosis is a severe condition in interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-ILD, where the underlying mechanism is not well defined and with no curative treatments available. Serotonin (5-HT) signaling via the 5-HT2B receptor has been recognized as a promising preclinical target for fibrosis. Despite this, the involvement of the 5-HT2B receptor in fibrotic ILD is widely unexplored. This work highlights the spatial pulmonary distribution of the 5-HT2B receptor in patients with IPF and systemic sclerosis-ILD. We show that the 5-HT2B receptor is located in typical pathological structures e.g. honeycomb cysts and weakly in fibroblast foci. Together with immunohistochemistry and immunofluorescence stainings of patient derived distal lung tissues, we identified cell targets for 5-HT2B receptor interference in type II alveolar epithelial cells, endothelial cells and M2 macrophages. Our results emphasize the role of 5-HT2B receptor as a target in lung fibrosis, warranting further consideration in targeting fibrotic ILDs.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Humanos , Serotonina , Células Endoteliales/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Pulmón/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/patología , Esclerodermia Sistémica/patología
3.
Front Physiol ; 14: 1094245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994416

RESUMEN

Introduction: Chronic lung disorders involve pathological alterations in the lung tissue with hypoxia as a consequence. Hypoxia may influence the release of inflammatory mediators and growth factors including vascular endothelial growth factor (VEGF) and prostaglandin (PG)E2. The aim of this work was to investigate how hypoxia affects human lung epithelial cells in combination with profibrotic stimuli and its correlation to pathogenesis. Methods: Human bronchial (BEAS-2B) and alveolar (hAELVi) epithelial cells were exposed to either hypoxia (1% O2) or normoxia (21% O2) during 24 h, with or without transforming growth factor (TGF)-ß1. mRNA expression of genes and proteins related to disease pathology were analysed with qPCR, ELISA or immunocytochemistry. Alterations in cell viability and metabolic activity were determined. Results: In BEAS-2B and hAELVi, hypoxia significantly dowregulated genes related to fibrosis, mitochondrial stress, oxidative stress, apoptosis and inflammation whereas VEGF receptor 2 increased. Hypoxia increased the expression of Tenascin-C, whereas both hypoxia and TGF-ß1 stimuli increased the release of VEGF, IL-6, IL-8 and MCP-1 in BEAS-2B. In hAELVi, hypoxia reduced the release of fibroblast growth factor, epidermal growth factor, PGE2, IL-6 and IL-8, whereas TGF-ß1 stimulus significantly increased the release of PGE2 and IL-6. TGF-ß1 stimulated BEAS-2B cells showed a decreased release of VEGF-A and IL-8, while TGF-ß1 stimulated hAELVi cells showed a decreased release of PGE2 and IL-8 during hypoxia compared to normoxia. Metabolic activity was significantly increased by hypoxia in both epithelial cell types. Discussion: In conclusion, our data indicate that bronchial and alveolar epithelial cells respond differently to hypoxia and profibrotic stimuli. The bronchial epithelium appears more responsive to changes in oxygen levels and remodelling processes compared to the alveoli, suggesting that hypoxia may be a driver of pathogenesis in chronic lung disorders.

4.
Cells ; 11(6)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35326483

RESUMEN

Cell-based therapies hold great promise in re-establishing organ function for many diseases, including untreatable lung diseases such as idiopathic pulmonary fibrosis (IPF). However, many hurdles still remain, in part due to our lack of knowledge about the disease-driving mechanisms that may affect the cellular niche and thereby possibly hinder the function of any transplanted cells by imposing the disease phenotype onto the newly generated progeny. Recent findings have demonstrated increased ciliation of lung cells from IPF patients, but how this affects ciliated cell function and the airway milieu is not well-known. Here, we performed single-cell RNA sequencing on primary ciliated (FOXJ1+) cells isolated from IPF patients and from healthy control donors. The sequencing identified multiple biological processes, such as cilium morphogenesis and cell signaling, that were significantly changed between IPF and healthy ciliated cells. Ferritin light chain (FTL) was downregulated in IPF, which suggests that iron metabolism may be affected in the IPF ciliated cells. The RNA expression was confirmed at the protein level with histological localization in lung tissue, prompting future functional assays to reveal the potential role of FTL. Taken together, our data demonstrate the importance of careful analyses in pure cell populations to better understand the IPF disease mechanism.


Asunto(s)
Fibrosis Pulmonar Idiopática , Apoferritinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Transducción de Señal
5.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34948231

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the diagnostic and prognostic assessment of the disease and response to treatment. In this two-part explorative proteomic study, we demonstrate how proteins associated with tissue remodeling, inflammation and chemotaxis such as MMP7, CXCL13 and CCL19 are released in response to aberrant extracellular matrix (ECM) in IPF lung. We used a novel ex vivo model where decellularized lung tissue from IPF patients and healthy donors were repopulated with healthy fibroblasts to monitor locally released mediators. Results were validated in longitudinally collected serum samples from 38 IPF patients and from 77 healthy controls. We demonstrate how proteins elevated in the ex vivo model (e.g., MMP7), and other serum proteins found elevated in IPF patients such as HGF, VEGFA, MCP-3, IL-6 and TNFRSF12A, are associated with disease severity and progression and their response to antifibrotic treatment. Our study supports the model's applicability in studying mechanisms involved in IPF and provides additional evidence for both established and potentially new biomarkers in IPF.


Asunto(s)
Biomarcadores/metabolismo , Microambiente Celular/fisiología , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Anciano , Quimiocina CCL7/metabolismo , Quimiocina CXCL13/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Metaloproteinasa 7 de la Matriz/metabolismo , Persona de Mediana Edad , Proteómica/métodos , Receptor de TWEAK/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Sci Rep ; 11(1): 24417, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952905

RESUMEN

Mesenchymal cells are important components of specified niches in the lung, and can mediate a wide range of processes including tissue regeneration and repair. Dysregulation of these processes can lead to improper remodeling of tissue as observed in several lung diseases. The mesenchymal cells responsible remain poorly described, partially due to the heterogenic nature of the mesenchymal compartment and the absence of appropriate markers. Here, we describe that CD105+CD90+ mesenchymal cells can be divided into two populations based on their expression of CD13/aminopeptidase N (CD105+CD90+CD13- and CD105+CD90+CD13+). By prospective isolation using FACS, we show that both these populations give rise to clonogenic fibroblast-like cells, but with an increased clonogenic and proliferative capacity of CD105+CD90+CD13+ cells. Transcriptomic and spatial analysis pinpoints an adventitial fibroblast subset as the origin of CD105+CD90+CD13+ clonogenic mesenchymal cells in human lung.


Asunto(s)
Biomarcadores/análisis , Fibroblastos/inmunología , Pulmón/inmunología , Células Cultivadas , Fibroblastos/citología , Fibroblastos/patología , Humanos , Pulmón/patología , Cultivo Primario de Células
7.
Front Pharmacol ; 12: 645558, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040521

RESUMEN

It is known that the cell environment such as biomechanical properties and extracellular matrix (ECM) composition dictate cell behaviour including migration, proliferation, and differentiation. Important constituents of the microenvironment, including ECM molecules such as proteoglycans and glycosaminoglycans (GAGs), determine events in both embryogenesis and repair of the adult lung. Mesenchymal stromal/stem cells (MSC) have been shown to have immunomodulatory properties and may be potent actors regulating tissue remodelling and regenerative cell responses upon lung injury. Using MSC in cell-based therapy holds promise for treatment of chronic lung diseases such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, so far clinical trials with MSCs in COPD have not had a significant impact on disease amelioration nor on IPF, where low cell survival rate and pulmonary retention time are major hurdles to overcome. Research shows that the microenvironment has a profound impact on transplanted MSCs. In our studies on acellular lung tissue slices (lung scaffolds) from IPF patients versus healthy individuals, we see a profound effect on cellular activity, where healthy cells cultured in diseased lung scaffolds adapt and produce proteins further promoting a diseased environment, whereas cells on healthy scaffolds sustain a healthy proteomic profile. Therefore, modulating the environmental context for cell-based therapy may be a potent way to improve treatment using MSCs. In this review, we will describe the importance of the microenvironment for cell-based therapy in chronic lung diseases, how MSC-ECM interactions can affect therapeutic output and describe current progress in the field of cell-based therapy.

8.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379351

RESUMEN

Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 conditions, of which primarily idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia, hypersensitivity pneumonitis, ILD associated with autoimmune diseases and sarcoidosis may present a progressive fibrosing (PF) phenotype. Despite different aetiology and histopathological patterns, the PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis, which suggests that the diseases may share common pathogenetic pathways. Previous studies show an enhanced activation of serotonergic signaling in pulmonary fibrosis, and the serotonin (5-HT)2 receptors have been implicated to have important roles in observed profibrotic actions. Our research findings in support by others, demonstrate antifibrotic effects with 5-HT2B receptor antagonists, alleviating several key events common for the fibrotic diseases such as myofibroblast differentiation and connective tissue deposition. In this review, we will address the potential role of 5-HT and in particular the 5-HT2B receptors in three PF-ILDs: ILD associated with systemic sclerosis (SSc-ILD), ILD associated with rheumatoid arthritis (RA-ILD) and IPF. Highlighting the converging pathways in these diseases discloses the 5-HT2B receptor as a potential disease target for PF-ILDs, which today have an urgent unmet need for therapeutic strategies.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Receptor de Serotonina 5-HT2B/metabolismo , Animales , Humanos , Fibrosis Pulmonar Idiopática/inmunología , Inflamación/patología , Enfermedades Pulmonares Intersticiales/inmunología , Modelos Biológicos , Antagonistas del Receptor de Serotonina 5-HT2/farmacología
9.
Respir Med X ; 2: 100023, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33083782

RESUMEN

As Covid-19 affects millions of people worldwide, the global health care will encounter an increasing burden of the aftermaths of the disease. Evidence shows that up to a fifth of the patients develop fibrotic tissue in the lung. The SARS outbreak in the early 2000 resulted in chronic pulmonary fibrosis in a subset (around 4%) of the patients, and correlated to reduced lung function and forced expiratory volume (FEV). The similarities between corona virus infections causing SARS and Covid-19 are striking, except that the novel coronavirus, SARS-CoV-2, has proven to have an even higher communicability. This would translate into a large number of patients seeking care for clinical signs of pulmonary fibrosis, given that the Covid-19 pandemic has up till now (Sept 2020) affected around 30 million people. The SARS-CoV-2 is dependent on binding to the angiotensin converting enzyme 2 (ACE2), which is part of the renin-angiotensin system (RAS). Downregulation of ACE2 upon virus binding disturbs downstream activities of RAS resulting in increased inflammation and development of fibrosis. The poor prognosis and risk of developing pulmonary fibrosis are therefore associated with the increased expression of ACE2 in risk groups, such as obesity, heart disorders and aging, conferring plenty of binding opportunity for the virus and subsequently the internalization of ACE2, thus devoiding the enzyme from acting counter-inflammatory and antifibrotic. Identifying pathways that are associated with Covid-19 severity that result in pulmonary fibrosis may enable early diagnosis and individualized treatment for these patients to prevent or reduce irreversible fibrotic damage to the lung.

10.
Nanomaterials (Basel) ; 10(9)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961914

RESUMEN

Silver nanoparticles (AgNPs) are commonly used in commercial and medical applications. However, AgNPs may induce toxicity, extracellular matrix (ECM) changes and inflammatory responses. Fibroblasts are key players in remodeling processes and major producers of the ECM. The aims of this study were to explore the effect of AgNPs on cell viability, both ex vivo in murine precision cut lung slices (PCLS) and in vitro in human lung fibroblasts (HFL-1), and immunomodulatory responses in fibroblasts. PCLS and HFL-1 were exposed to AgNPs with different sizes, 10 nm and 75 nm, at concentrations 2 µg/mL and 10 µg/mL. Changes in synthesis of ECM proteins, growth factors and cytokines were analyzed in HFL-1. Ag10 and Ag75 affected cell viability, with significantly reduced metabolic activities at 10 µg/mL in both PCLS and HFL-1 after 48 h. AgNPs significantly increased procollagen I synthesis and release of IL-8, prostaglandin E2, RANTES and eotaxin, whereas reduced IL-6 release was observed in HFL-1 after 72 h. Our data indicate toxic effects of AgNP exposure on cell viability ex vivo and in vitro with altered procollagen and proinflammatory cytokine secretion in fibroblasts over time. Hence, careful characterizations of AgNPs are of importance, and future studies should include timepoints beyond 24 h.

11.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426504

RESUMEN

In idiopathic pulmonary fibrosis (IPF) structural properties of the extracellular matrix (ECM) are altered and influence cellular responses through cell-matrix interactions. Scaffolds (decellularized tissue) derived from subpleural healthy and IPF lungs were examined regarding biomechanical properties and ECM composition of proteins (the matrisome). Scaffolds were repopulated with healthy fibroblasts cultured under static stretch with heavy isotope amino acids (SILAC), to examine newly synthesized proteins over time. IPF scaffolds were characterized by increased tissue density, stiffness, ultimate force, and differential expressions of matrisome proteins compared to healthy scaffolds. Collagens, proteoglycans, and ECM glycoproteins were increased in IPF scaffolds, however while specific basement membrane (BM) proteins such as laminins and collagen IV were decreased, nidogen-2 was also increased. Findings were confirmed with histology, clearly showing a disorganized BM. Fibroblasts produced scaffold-specific proteins mimicking preexisting scaffold composition, where 11 out of 20 BM proteins were differentially expressed, along with increased periostin and proteoglycans production. We demonstrate how matrisome changes affect fibroblast activity using novel approaches to study temporal differences, where IPF scaffolds support a disorganized BM and upregulation of disease-associated proteins. These matrix-directed cellular responses emphasize the IPF matrisome and specifically the BM components as important factors for disease progression.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrosis Pulmonar Idiopática/genética , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular/genética , Colágeno/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glicoproteínas/genética , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Laminina/genética , Proteoglicanos/genética , Proteómica
12.
Sci Rep ; 8(1): 1927, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386571

RESUMEN

Serotonin (5-hydroxytryptamine) has repeatedly been associated with the development of fibrotic disorders such as pulmonary fibrosis. By blocking the binding of 5-HT to 5-HT2B receptors with receptor antagonists, several pro-fibrotic mechanisms can be inhibited. Bleomycin-induced pulmonary fibrosis is a model used to evaluate pathological mechanisms and pharmacological interventions. Previously we have shown attenuated fibrosis in systemic bleomycin-treated mice following treatment with two 5-HT2B receptor antagonists (EXT5 and EXT9). Our aim is to further identify cellular effects and signaling pathways associated with the anti-fibrotic effects of EXT5/9. Gene expressions in lung tissues from systemic bleomycin-treated mice were examined, revealing significant increased expression of Cdkn1α (a gene coding for p21), particularly in distal regions of the lung. In vitro studies in human lung fibroblasts revealed increased levels of p21 (p = 0.0032) and pAkt (p = 0.12) following treatment with 5-HT (10 µM). The induction of p21 and pAkt appears to be regulated by 5-HT2B receptors, with diminished protein levels following EXT9-treatment (p21 p = 0.0024, pAkt p = 0.15). Additionally, 5-HT induced fibroblast proliferation, an event significantly reduced by EXT5 (10 µM) and EXT9 (10 µM). In conclusion, our results suggest that 5-HT2B receptor antagonism attenuates pulmonary fibrosis in part by anti-proliferative effects, associated with inhibited pAkt/p21 signaling pathway.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptor de Serotonina 5-HT2B/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Bleomicina , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Perfilación de la Expresión Génica , Humanos , Pulmón/patología , Ratones Endogámicos C57BL , Fibrosis Pulmonar/genética , Regulación hacia Arriba/efectos de los fármacos
13.
Am J Pathol ; 188(5): 1113-1119, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29454752

RESUMEN

Serotonin [5-hydroxytryptamine (5-HT)] is associated with several chronic pulmonary diseases, recognizing 5-HT2 receptor antagonists as potential inhibitors of tissue remodeling. However, the effects of 5-HT2 receptors, especially 5-HT2B receptors on airway function and remodeling, are unclear. We investigated the role of 5-HT2B receptors on airway smooth muscle contractility and remodeling processes. Murine precision-cut lung slices were pretreated with 5-HT2B receptor antagonists (EXT5, EXT9, RS 127445, and PRX 08066), as well as ketanserin (5-HT2A/2C receptor antagonist) (1, 10 µmol/L), before addition of cumulative concentrations of 5-HT to induce bronchoconstriction. Remodeling effects after treatment with 10 µmol/L 5-HT and 5-HT2 receptor antagonists were further studied in distal lung tissue by examining release of profibrotic transforming growth factor (TGF)-ß1 and proliferation of human bronchial smooth muscle cells (HBSMCs). 5-HT-induced bronchoconstriction was significantly reduced by EXT5, EXT9, and ketanserin, but not by RS 127445 or PRX 08066. The 5-HT2B receptor antagonists significantly reduced TGF-ß1 release. 5-HT, in combination with TGF-ß1, increased proliferation of HBSMCs, a process reduced by EXT5 and EXT9. Our results indicate that EXT5 and EXT9 may relieve bronchoconstriction in murine airways and serve as an add-on effect in attenuating pulmonary remodeling by improving airway function. The antiproliferative effect on HBSMCs and the inhibition of TGF-ß1 release further support a role of 5-HT2B receptors in pathologic remodeling processes.


Asunto(s)
Broncoconstricción/efectos de los fármacos , Pulmón/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Humanos , Ketanserina/farmacología , Pulmón/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Pirimidinas/farmacología , Receptores de Serotonina 5-HT2/metabolismo , Tiofenos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
14.
Physiol Rep ; 4(15)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27482070

RESUMEN

Pulmonary fibrosis is characterized by excessive accumulation of connective tissue, along with activated extracellular matrix (ECM)-producing cells, myofibroblasts. The pathological mechanisms are not well known, however serotonin (5-HT) and 5-HT class 2 (5-HT2) receptors have been associated with fibrosis. The aim of the present study was to investigate the role of 5-HT2B receptors in fibrosis, using small molecular 5-HT2B receptor antagonists EXT5 and EXT9, with slightly different receptor affinity. Myofibroblast differentiation [production of alpha-smooth muscle actin (α-SMA)] and ECM synthesis were quantified in vitro, and the effects of the receptor antagonists were evaluated. Pulmonary fibrosis was also modeled in mice by subcutaneous bleomycin administrations (under light isoflurane anesthesia), and the effects of receptor antagonists on tissue density, collagen-producing cells, myofibroblasts and decorin expression were investigated. In addition, cytokine expression was analyzed in serum. Lung fibroblasts displayed an increased α-SMA (P < 0.05) and total proteoglycan production (P < 0.01) when cultured with TGF-ß1 together with 5-HT, which were significantly reduced with both receptor antagonists. Following treatment with EXT5 or EXT9, tissue density, expression of decorin, number of collagen-producing cells, and myofibroblasts were significantly decreased in vivo compared to bleomycin-treated mice. Receptor antagonization also significantly reduced systemic levels of TNF-α and IL-1ß, indicating a role in systemic inflammation. In conclusion, 5-HT2B receptor antagonists have potential to prevent myofibroblast differentiation, in vitro and in vivo, with subsequent effect on matrix deposition. The attenuating effects of 5-HT2B receptor antagonists on fibrotic tissue remodeling suggest these receptors as novel targets for the treatment of pulmonary fibrosis.


Asunto(s)
Miofibroblastos/fisiología , Fibrosis Pulmonar/fisiopatología , Receptor de Serotonina 5-HT2B/fisiología , Antagonistas del Receptor de Serotonina 5-HT2/administración & dosificación , Animales , Bleomicina , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Técnicas In Vitro , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/efectos de los fármacos , Proteoglicanos/efectos de los fármacos , Proteoglicanos/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptor de Serotonina 5-HT2B/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...